\( \newcommand{\water}{{\rm H_{2}O}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\d}{\mathop{}\!\mathrm{d}} \newcommand{\grad}{\nabla} \newcommand{\T}{^\text{T}} \newcommand{\mathbbone}{\unicode{x1D7D9}} \renewcommand{\:}{\enspace} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator{\Tr}{Tr} \newcommand{\norm}[1]{\lVert #1\rVert} \newcommand{\KL}[2]{ \text{KL}\left(\left.\rule{0pt}{10pt} #1 \; \right\| \; #2 \right) } \newcommand{\slashfrac}[2]{\left.#1\middle/#2\right.} \)

Measurable space: A sample space and an associated sigma algebra

Consider a sample space \(\; \Omega = \left\{ \omega \right\} \;\) and an associated sigma algebra \(\; \mathcal{F} \;\). A measurable space is simply the tuple

\[ \left( \Omega, \mathcal{F} \right). \]

NOTE In spite of the name, the measurable space does not include a measure \(\; P \;\). If we included the measure, then we would get a probability space.


References

1 https://en.wikipedia.org/wiki/Measurable_space